Kamis, 18 Oktober 2012

TUGAS ORKOM (RUDINI 10.04.1245)


Bilangan Desimal 


Bilangan Desimal/persepuluhan adalah sistem bilangan yang menggunakan 10 macam angka dari 0,1, sampai 9. Setelah angka 9, angka berikutnya adalah 1 0, 1 1, dan seterusnya (posisi di angka 9 diganti dengan angka 0, 1, 2, .. 9 lagi, tetapi angka di depannya dinaikkan menjadi 1). sistem bilangan desimal ditemukan oleh Al-Kashi,ilmuwan persia Sistem bilangan desimal sering dikenal sebagai sistem bilangan berbasis 10, karena tiap angka desimal menggunakan basis (radix) 10, seperti yang terlihat dalam contoh berikut: angka desimal 123 = 1*102 + 2*101 + 3*100
 Berikut adalah tabel yang menampilkan sistem angka desimal (basis 10), sistem bilangan biner (basis 2), sistem bilangan/ angka oktal (basis 8), dan sistem angka heksadesimal (basis 16) yang merupakan dasar pengetahuan untuk mempelajari komputer digital. Bilangan oktal dibentuk dari bilangan biner-nya dengan mengelompokkan tiap 3 bit dari ujung kanan (LSB). Sementara bilangan heksadesimal juga dapat dibentuk dengan mudah dari angka biner-nya dengan mengelompokkan tiap 4 bit dari ujung kanan

Bilangan Desimal


Bilangan Desimal dan Bilangan Biner

Bilangan desimal adalah bilangan yang terdiri dari angka 0 hingga 9.
Contoh bilangan desimal : 16, 6, 8, 172 dll
Bilangan biner adalah bilangan yang terdiri atas 2 angka, yaitu angka 0 dan angka 1
Contoh : 0011, 1111, 101, 11001
Adapun konversi bilangan desimal ke biner dilakukan dengan membagi bilangan desimal tersebut dengan angka 2. Agar lebih jelas, maka perhatikan contoh di bawah ini :
- Mengubah 16 ke dalam bilangan biner
16:2 = 8 –> sisa 0
8 : 2= 4 –> sisa 0
4 : 2 = 2 –> SISA 0
2 : 2 = 1 –> sisa 0
Lalu dari hasil pembagian terakhir yang bernilai 1, disusun dari bawah hingga ke atas sisa dari pembagian tadi, sehingga angka biner dari bilangan desimal 16 adalah 10000
- Mengubah 9 ke dalam bilangan biner
9 : 2 = 4 –> sisa 1
4 : 2 = 2 –> sisa 0
2 : 2 = 1 –> sisa 0
angka biner dari bilangan desimal 9 adalah 1001
Sedangkan konversi bilangan biner ke desimal adalah dengan mengalikan angka biner dari kanan ke kiri dengan 2 pangkat n (2^n) di mana nilai n dimulai dari 0
- mengubah 10000 ke dalam desimal
Diurai dari kanan ke kiri
0 x 2^0 =0
0 x 2^1 =0
0 x 2^2 =0
0 x 2^3 =0
1 x 2^4 =16
Lalu dijumlah 0+0+0+0+16 =16
Sehingga bilangan desimal dari bilangan binet 10000 adalah 16

Bilangan Biner

 Sistem bilangan biner atau sistem bilangan basis dua adalah sebuah sistem penulisan angka dengan menggunakan dua simbol yaitu 0 dan 1. Sistem bilangan biner modern ditemukan oleh Gottfried Wilhelm Leibniz pada abad ke-17. Sistem bilangan ini merupakan dasar dari semua sistem bilangan berbasis digital. Dari sistem biner, kita dapat mengkonversinya ke sistem bilangan Oktalatau Hexadesimal. Sistem ini juga dapat kita sebut dengan istilah bit, atau Binary Digit. Pengelompokan biner dalam komputer selalu berjumlah 8, dengan istilah 1 Byte/bita. Dalam istilah komputer, 1 Byte = 8 bit. Kode-kode rancang bangunkomputer, seperti ASCIIAmerican Standard Code for Information Interchangemenggunakan sistem peng-kode-an 1 Byte.


20=1
21=2
22=4
23=8
24=16
25=32
26=64
Hitungan

Bilangan Biner


Perhitungan dalam biner mirip dengan menghitung dalam sistem bilangan lain. Dimulai dengan angka pertama, dan angka selanjutnya. Dalam sistem bilangan desimal, perhitungan mnggunakan angka 0 hingga 9, sedangkan dalam biner hanya menggunakan angka 0 dan 1.
contoh: mengubah bilangan desimal menjadi biner
desimal = 10.
berdasarkan referensi diatas yang mendekati bilangan 10 adalah 8 (23), selanjutnya hasil pengurangan 10-8 = 2 (21). sehingga dapat dijabarkan seperti berikut
10 = (1 x 23) + (0 x 22) + (1 x 21) + (0 x 20).
dari perhitungan di atas bilangan biner dari 10 adalah 1010
dapat juga dengan cara lain yaitu 10 : 2 = 5 sisa 0 (0 akan menjadi angka terakhir dalam bilangan biner), 5(hasil pembagian pertama) : 2 = 2 sisa 1 (1 akan menjadi angka kedua terakhir dalam bilangan biner), 2(hasil pembagian kedua): 2 = 1 sisa0(0 akan menjadi angka ketiga terakhir dalam bilangan biner), 1 (hasil pembagian ketiga): 2 = 0 sisa 1 (1 akan menjadi angka pertama dalam bilangan biner) karena hasil bagi sudah 0 atau habis, sehingga bilangan biner dari 10 = 1010
atau dengan cara yang singkat
10:2=5(0),
5:2=2(1),
2:2=1(0),
1:2=0(1) sisa hasil bagi dibaca dari belakang menjadi 1010

Bilangan Oktal

Oktal atau sistem bilangan basis 8 adalah sebuah sistem bilangan berbasis delapan. Simbol yang digunakan pada sistem ini adalah 0,1,2,3,4,5,6,7. Konversi Sistem Bilangan Oktal berasal dari Sistem bilangan biner yang dikelompokkan tiap tiga bit biner dari ujung paling kanan (LSB atau Least Significant Bit).

Bilangan Oktal

Bilangan Heksadesimal 

Heksadesimal atau sistem bilangan basis 16 adalah sebuah sistem bilanganyang menggunakan 16 simbol. Berbeda dengan sistem bilangan desimal, simbol yang digunakan dari sistem ini adalah angka 0 sampai 9, ditambah dengan 6 simbol lainnya dengan menggunakan huruf A hingga F. Sistem bilangan ini digunakan untuk menampilkan nilai alamat memori dalam pemrograman komputer. Nilai desimal yang setara dengan setiap simbol tersebut diperlihatkan pada tabel berikut:

Bilangan Heksadesimal

Konversi dari heksadesimal ke desimal

Untuk mengkonversinya ke dalam bilangan desimal, dapat menggunakan formula berikut:
Dari bilangan heksadesimal H yang merupakan untai digit h_n h_{n-1}...h_2 h_1 h_0, jika dikonversikan menjadi bilangan desimal D,
Sebagai contoh, bilangan heksa 10E yang akan dikonversi ke dalam bilangan desimal:
  • Digit-digit 10E dapat dipisahkan dan mengganti bilangan A sampai F (jika terdapat) menjadi bilangan desimal padanannya. Pada contoh ini, 10E diubah menjadi barisan: 1,0,14 (E = 14 dalam basis 10)
  • Mengalikan dari tiap digit terhadap nilai tempatnya.
Dengan demikian, bilangan 10E heksadesimal sama dengan bilangan desimal 270.

 Konversi dari desimal ke heksadesimal

Sedangkan untuk mengkonversi sistem desimal ke heksadesimal caranya sebagai berikut (kita gunakan contoh sebelumnya, yaitu angka desimal 270):
 270 dibagi 16 hasil:  16   sisa 14  ( = E )
  16 dibagi 16 hasil:   1   sisa  0  ( = 0 )
   1 dibagi 16 hasil:   0   sisa  1  ( = 1 )
Dari perhitungan di atas, nilai sisa yang diperoleh (jika ditulis dari bawah ke atas) akan menghasilkan : 10E yang merupakan hasil konversi dari bilangan desimal ke heksadesimal itu.

Konversi Bilangan

Konversi bilangan adalah suatu proses dimana satu system bilangan dengan basis tertentu akan dijadikan bilangan dengan basis yang lain.
010101011111 (2) = 2537 (8)

Konversi dari bilangan Desimal
1. Konversi dari bilangan Desimal ke biner
Yaitu dengan cara membagi bilangan desimal dengan dua kemudian diambil sisa pembagiannya.
Contoh :

45 (10) = …..(2)
45 : 2 = 22 + sisa 1
22 : 2 = 11 + sisa 0
11 : 2 = 5 + sisa 1
5 : 2 = 2 + sisa 1
2 : 2 = 1 + sisa 0 101101(2) ditulis dari bawah ke atas
2. Konversi bilangan Desimal ke Oktal
Yaitu dengan cara membagi bilangan desimal dengan 8 kemudian diambil sisa pembagiannya
Contoh :
385 ( 10 ) = ….(8)
385 : 8 = 48 + sisa 1
48 : 8 = 6 + sisa 0
601 (8)
3. Konversi bilangan Desimal ke Hexadesimal
Yaitu dengan cara membagi bilangan desimal dengan 16 kemudian diambil sisa pembagiannya
Contoh :
1583 ( 10 ) = ….(16)
1583 : 16 = 98 + sisa 15
96 : 16 = 6 + sisa 2
62F (16)
Konversi dari system bilangan Biner
1. Konversi ke desimal
Yaitu dengan cara mengalikan masing-masing bit dalam bilangan dengan position valuenya.
Contoh :
1 0 0 1
1 x 2 pangkat 0 = 1
0 x 2 pangkat 1 = 0
0 x 2 pangkat 2 = 0
1 x 2 pangkat 3 = 8
—+
9 (10)
2. Konversi ke Oktal
Dapat dilakukan dengan mengkonversikan tiap-tiap tiga buah digit biner yang dimulai dari bagian belakang.
Contoh :
11010100 (2) = ………(8)
11 010 100
3 2 4
diperjelas :
100B = 4D
0 x 2 pangkat 0 = 0
0 x 2 pangkat 1 = 0
1 x 2 pangkat 2 = 4
—+
4
Begitu seterusnya untuk yang lain.
3. Konversi ke Hexademial
Dapat dilakukan dengan mengkonversikan tiap-tiap empat buah digit biner yang dimulai dari bagian belakang.
Contoh :
11010100
1101 0100
D 4
Konversi dari system bilangan Oktal
1. Konversi ke Desimal
Yaitu dengan cara mengalikan masing-masing bit dalam bilangan dengan position valuenya.
Contoh :
12(8) = …… (10)
2 x 8 pangkat 0 = 2
1 x 8 pangkat 1 = 8
–+
Jadi 10 (10)
2. Konversi ke Biner
Dilakukan dengan mengkonversikan masing-masing digit octal ke tiga digit biner.
Contoh :
6502 (8) ….. = (2)
2 = 010
0 = 000
5 = 101
6 = 110
jadi 110101000010
3. Konversi ke Hexadesimal
Dilakukan dengan cara merubah dari bilangan octal menjadi bilangan biner kemudian dikonversikan ke hexadesimal.
Contoh :
2537 (8) = …..(16)
2537 (8) = 010101011111
010101010000(2) = 55F (16)
Konversi dari bilangan Hexadesimal
1. Konversi ke Desimal
Yaitu dengan cara mengalikan masing-masing bit dalam bilangan dengan position valuenya.
Contoh :
C7(16) = …… (10)
7 x 16 pangkat 0 = 7
C x 16 pangkat 1 = 192
—+
199
Jadi 199 (10)
2. Konversi ke Oktal
Dilakukan dengan cara merubah dari bilangan hexadesimal menjadi biner terlebih dahulu kemudian dikonversikan ke octal.
Contoh :
55F (16) = …..(8)
55F(16) = 010101011111(2)
Kesimpulan:
1. Dari desimal ke biner, oktal, hexa adalah bilangan desimal dibagi dengan radix bilangan yang ditanyakan.
desimal 13=….(2)–> biner radixnya adalah 2 maka dibagi 2
13 : 2 = 6 sisa 1 ^
6 : 2 = 3 sisa 0 |
3 : 2 = 1 sisa 1 |
1 : 2 = 0 sisa 1 |
sisa ditulis dari bawah ke atas sehingga desimal 13 = 1101 B
Desimal ke hexadesimal
desimal 33 = …..H
33 : 16 = 2 sisa 1
2 : 16 = 0 sisa 2
sisa ditulis dari bawah ke atas sehingga desimal 33 = 21H
2. Dari biner, oktal, hexa ke desimal
misal –> 1101B =1.2 pangkat 3 + 1.2 pangkat 2 + 1.2 pangkat 1 + 1.2 pangkat 0 = 13. n=3n=2n=1n=0
21H = 2.16 pangkat 1 + 2. 16 pangkat 0 = 33D
3. Biner ke hex ==> 2 log 16 = 4, bilangan biner dipisahkan masing2 4 bit dari kiri.
misal 11011001 B = D9H.
4. Biner ke Oktal.
misal 011010101110B = 3256(8)
011 = 3,010=2,101=5,110=6.

Operasi Aritmatika dan Logika 

  Arithmetic And Logic Unit (bahasa Indonesia: unit aritmatika dan logika), adalah salah satu bagian dalam dari sebuah mikroprosesor yang berfungsi untuk melakukan operasi hitungan aritmatika dan logika. Contoh operasi aritmatika adalah operasi penjumlahan dan pengurangan, sedangkan contoh operasi logika adalah logika AND dan OR. tugas utama dari ALU (Arithmetic And Logic Unit)adalah melakukan semua perhitungan aritmatika atau matematika yang terjadi sesuai dengan instruksi program. ALU melakukan operasi aritmatika yang lainnya. Seperti pengurangan, pengurangan, dan pembagian dilakukan dengan dasar penjumlahan. Sehingga sirkuit elektronik di ALU yang digunakan untuk melaksanakan operasi aritmatika ini disebut adder. ALU melakukan operasi arithmatika dengan dasar pertambahan, sedang operasi arithmatika yang lainnya, seperti pengurangan, perkalian, dan pembagian dilakukan dengan dasar penjumlahan. sehingga sirkuit elektronik di ALU yang digunakan untuk melaksanakan operasi arithmatika ini disebut adder. Tugas lalin dari ALU adalah melakukan keputusan dari operasi logika sesuai dengan instruksi program. Operasi logika (logical operation) meliputi perbandingan dua buah elemen logika dengan menggunakan operator logika, yaitu: 
a. sama dengan (=)
b. tidak sama dengan (<>)
c. kurang dari (<)
d. kurang atau sama dengan dari (<=)
e. lebih besar dari (>)
f. lebih besar atau sama dengan dari (>=) (sumber: Buku Pengenalan Komputer, Hal 154-155, karangan Prof.Dr.Jogiyanto H.M, M.B.A.,Akt.)

Tidak ada komentar:

Posting Komentar